
Exploring the Usefulness of Downscaling Free Forecasts from the

Warn-on-Forecast System

WILLIAM J. S. MILLER,a,b COREY K. POTVIN,b,c MONTGOMERY L. FLORA,a,b BURKELY T. GALLO,a,d

LOUIS J. WICKER,b THOMAS A. JONES,b,a PATRICK S. SKINNER,b,a BRIAN C. MATILLA,b,a AND

KENT H. KNOPFMEIERb,a

a Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
c School of Meteorology, University of Oklahoma, Norman, Oklahoma

d NOAA/NCEP/Storm Prediction Center, Norman, Oklahoma

(Manuscript received 19 May 2021, in final form 20 November 2021)

ABSTRACT: The National Severe Storms Laboratory (NSSL) Warn-on-Forecast System (WoFS) is an experimental
real-time rapidly updating convection-allowing ensemble that provides probabilistic short-term thunderstorm forecasts.
This study evaluates the impacts of reducing the forecast model horizontal grid spacing Dx from 3 to 1.5 km on the WoFS
deterministic and probabilistic forecast skill, using 11 case days selected from the 2020 NOAA Hazardous Weather
Testbed (HWT) Spring Forecasting Experiment (SFE). Verification methods include (i) subjective forecaster impressions;
(ii) a deterministic object-based technique that identifies forecast reflectivity and rotation track storm objects as contiguous
local maxima in the composite reflectivity and updraft helicity fields, respectively, and matches them to observed storm
objects; and (iii) a recently developed algorithm that matches observed mesocyclones to mesocyclone probability swath
objects constructed from the full ensemble of rotation track objects. Reducing Dx fails to systematically improve determin-
istic skill in forecasting reflectivity object occurrence, as measured by critical success index (CSIDET), a metric that incorpo-
rates both probability of detection (PODDET) and false alarm ratio (FARDET). However, compared to the Dx 5 3 km
configuration, the Dx 5 1.5 km WoFS shows improved midlevel mesocyclone detection, as evidenced by its statistically
significant (i) higher CSIDET for deterministic midlevel rotation track objects and (ii) higher normalized area under the
performance diagram curve (NAUPDC) score for probability swath objects. Comparison between Dx 5 3 km and Dx 5

1.5 km reflectivity object properties reveals that the latter have 30% stronger mean updraft speeds, 17% stronger median
80-m winds, 67% larger median hail diameter, and 28% higher median near-storm-maximum 0–3-km storm-relative helicity.

KEYWORDS: Forecast verification/skill; Numerical weather prediction/forecasting; Probability forecasts/models/
distribution; Short-range prediction; Mesoscale models; Model errors; Model evaluation/performance; Regional models

1. Introduction

As we work toward improving operational convection-
allowing model (CAM) thunderstorm forecasts, strategic
decisions must be made over how to allocate additional com-
puting power that becomes available. Decreasing CAM hori-
zontal grid spacing (Dx)1 is one option to improve the
resolution of convective motions. Using a horizontal grid
spacing of Dx ∼ 4 km is generally thought to be the coarsest
permissible resolution needed for explicitly resolving clouds
and larger-scale convective overturning motions (Weisman
et al. 1997). In recent years CAMs have become routinely
used in operational numerical weather prediction (NWP) to
forecast warm season convective weather events, and their
improved skill compared to that of coarser models has been
well documented. For example, real-time forecasts using the
Advanced Research version of the Weather Research and

Forecasting Model (WRF-ARW; Skamarock et al. 2008) bet-
ter represented the structure and convective mode of meso-
scale convective systems when Dx was decreased from ∼10 to
4 km and convective parameterizations were turned off
(Done et al. 2004; Weisman et al. 2008). However, increasing
model horizontal resolution carries a steep computational
cost: reducing Dx by a factor of 1=2 requires a factor of
8 increase in computer processing power, even while not
changing the vertical grid spacing. Therefore, the forecast skill
gained from decreasing horizontal grid spacing must be care-
fully weighed against other potentially beneficial utilizations
of increased computing power, such as improved physics
scheme complexity or a larger ensemble size.

Several previous studies have examined the sensitivity of
CAM-simulated convective structure and updraft intensity to
variations in Dx over the sub 1–4-km range. Bryan et al.
(2003) found significant differences in convective overturning
patterns, cloud depth, system phase speed, and storm cell size
in a simulated squall line when Dx was varied between 100 m
and 1 km. They concluded that although only models with
Dx # 100 m could accurately resolve turbulent convective
flows, those with Dx ∼ 1 km could still capture basic elements
of squall line structure and provide value to operational fore-
casters. When increasing a simulated squall line’s Dx from 1Corresponding author: WilliamMiller, wmiller1@umd.edu

1 Hereafter, the use of “Dx” represents the horizontal grid spac-
ing in “x” and “y” directions.
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to 4 km, Bryan and Morrison (2012) found that updraft speed
decreased; similar results have been reported for simulated
supercells when Dx was increased from 1 to 2 km (Adlerman
and Droegemeier 2002; Noda and Niino 2003; Potvin and
Flora 2015). These findings are consistent with the expecta-
tion that as Dx increases, nonhydrostatic accelerations should
weaken in the wider resolved updrafts (Markowski and Rich-
ardson 2010) and spatial filtering should more substantially
dampen local w maxima. On the other hand, Bryan and Mor-
rison (2012) also showed how a larger Dx could reduce turbu-
lent mixing and environmental air entrainment rates, thereby
increasing cloud latent heat release and updraft accelerations.
Additionally, it is worth noting that the O(1)-km length scale
is a “gray zone” (termed the terra incognita by Wyngaard
2004) that falls in between the O(10)-km length scale for
which many planetary boundary layer (PBL) physics schemes
used in the current generation of CAMs have been “tuned”
(Shin and Hong 2015) and the O(100)-m scales needed for
running large eddy simulations. Given the important role that
boundary layer processes play in the initiation and subsequent
evolution of deep moist convection, it is possible that opera-
tional CAMs may suffer degraded performance as Dx
approaches ∼1 km unless some PBL scheme parameters are
further tuned or made scale-aware (Bryan et al. 2003; Shin
and Hong 2015). For example, Verrelle et al. (2015) found
that simulated supercell updraft intensity increased with
increasing Dx over the 0.5–2-km range. They attributed this
trend to reduced entrainment on the coarser grids, which
resulted from underproduction of subgrid-scale turbulent
kinetic energy by the PBL physics scheme.

Keeping the above considerations in mind, we now turn
our attention to the National Severe Storms Laboratory
(NSSL) Experimental Warn-on-Forecast System (WoFS), a
CAM ensemble that provides probabilistic forecast guidance
on short O(0–3)-h time scales.2 Development of WoFS is
motivated by the National Oceanic and Atmospheric Admin-
istration (NOAA)’s strategic goal of increasing National
Weather Service (NWS)-issued warning lead times for severe
convective hazards, including tornadoes, damaging thunder-
storm downburst winds, hail, and flash flooding (Stensrud et al.
2009, 2013). For example, the average lead time for verified
NWS tornado warnings in 2015 was 8 min (Brooks and Cor-
reia 2018), clearly suboptimal for the protection of human
lives. Ultimately, WoFS could provide forecasters responsible
for issuing tornado, severe thunderstorm, and flash flood
warnings with another decision-making tool that comple-
ments radar-derived products and storm spotter reports.

WoFS, formerly named the NSSL Experimental Warn-on-
Forecast System for ensembles (NEWS-e; Wheatley et al.
2015), has been used experimentally since 2016 to generate
real-time forecasts over a regional domain covering a portion
of the continental United States where hazardous convective
weather is expected to occur. Skinner et al. (2018, hereafter S18)
applied a deterministic object-based verification methodology to

real-time 2016 and 2017 WoFS forecasts, and they found
that the WoFS can forecast thunderstorm occurrence at
0–3-h lead times with a reasonably high skill. WoFS has
also demonstrated skill in its short-term prediction of thun-
derstorm flash flooding (Yussouf and Knopfmeier 2019) as
well as the localized tornado, wind and rain hazards associ-
ated with landfalling tropical cyclones (Jones et al. 2019;
Yussouf et al. 2020).

Due to computational limitations, WoFS is developed using
Dx 5 3 km. Although 3-km horizontal grid spacing is far too
coarse for resolving tornadoes, Potvin and Flora (2015)
showed that idealized Dx 5 3 km simulations could capture
low-level mesocyclone tracks reasonably well. Their finding is
encouraging, given that (i) mesocyclones are a necessary pre-
cursor for tornadogenesis in supercell thunderstorms (Mar-
kowski and Richardson 2010); and that (ii) supercells spawn
the majority of deadly U.S. tornadoes (Schoen and Ashley
2011). Although only ∼25% of all mesocyclones detected by
Doppler radar produce a tornado, the probability of tornado
association increases substantially to ∼40% for low-level mes-
ocyclones, i.e., those with cloud bases detected below 1 km
above ground level (AGL; Trapp et al. 2005). Furthermore,
recent modeling studies have shown that tornadogenesis like-
lihood is well correlated with low-level mesocyclone strength
(e.g., Mashiko 2016a,b; Roberts et al. 2016; Yokota et al.
2018). Updraft helicity (UH; Kain et al. 2008)—the height
integral of upward vertical velocity multiplied by the vertical
component of relative vorticity z—can serve as a proxy vari-
able for detecting mesocyclones in model output. S18 found
that WoFS tended to over-forecast rotational storm objects
defined using 2–5 km AGL layer UH (hereafter UH2–5). Per-
haps more significantly, they reported little difference
between the WoFS skill in forecasting the occurrence of
0–2 km AGL layer UH (hereafter UH0–2) objects and that for
UH2–5 objects, which implies that the Dx 5 3 km WoFS may
struggle to resolve the storm-scale processes that control low-
level mesocyclone development and dissipation. Lawson et al.
(2021, hereafter L21) found that reducing the WoFS Dx to
1 km improved detection of the most intense storms, i.e.,
those with high radar reflectivity or strong low- to midlevel
rotation, when using a novel probabilistic object-based infor-
mation gain metric that rewarded successful prediction of rare
events. Their study was limited to four spring 2019 cases charac-
terized by environments with high vertical wind shear (VWS)
and low convective available potential energy (CAPE). There-
fore, further studies are needed to better understand the sensi-
tivity of WoFS forecast skill to Dx.

In this study, we evaluate the impacts of reducing Dx from
3 to 1.5 km on the WoFS short-range (i.e., 0–3 h) skill in fore-
casting the occurrence of mesocyclones and severe thunder-
storms. We select quasi-operational WoFS forecasts generated
for 11 case days in support of the 2020 NOAA Hazardous
Weather Testbed (HWT) Spring Forecasting Experiment (SFE;
Clark et al. 2012; Gallo et al. 2017; Clark et al. 2021). Starting
from a set of Dx5 3 km WoFS analyses, Dx 5 3 km [hereafter,
denoted as “Realtime”) WoFS free forecasts are compared to
downscaled (hereafter, denoted as “HIRES”) free forecasts
that activate a Dx 5 1.5 km nest inside of the parent Realtime

2 Although the WoFS mission primarily focuses on 0–3-h fore-
casts, the experimentalWoFS is now routinely run for a 6-h period.
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grid. Our term “free forecasts” emphasizes the fact that the
model integration is not interrupted with any data assimilation
update cycles. We evaluate WoFS forecast skill separately in
deterministic and probabilistic frameworks using object-based
methods developed by S18 and Flora et al. (2019, hereafter
F19), respectively. The deterministic verification method,
applied independently to each ensemble member, defines fore-
cast storm objects as discrete contiguous regions where a proxy
variable for storm intensity exceeds a predetermined threshold
and matches them to observed objects. By contrast, the proba-
bilistic method uses the full ensemble to generate forecast prob-
ability swath objects, each of which represents the likelihood
that a given storm event produces a mesocyclone, and matches
them to observed storm objects. Our study addresses the fol-
lowing questions. First, to what extent (if at all), does the
HIRES WoFS improve deterministic forecasts of severe thun-
derstorm and mesocyclone occurrence, relative to the Realtime
WoFS? Second, does reducing the WoFS Dx to 1.5 km improve
probabilistic skill of mesocyclone forecasts? And finally, how
sensitive are WoFS-forecast storm-scale processes to doubling
the horizontal grid resolution?

The remainder of this paper is organized as follows. The
next section describes the 11 case days, model configuration,
observations, and verification methods. Section 3 presents our
results comparing the Realtime and HIRES WoFS forecasts
in terms of subjective forecaster impressions, object-based
deterministic and probabilistic skill verification, and model
representations of storm-scale processes. A summary and
conclusions are given in the final section.

2. Datasets and methodology

a. Summary of cases

Table 1 summarizes the 11 spring 2020 severe thunderstorm
case days analyzed herein. The most destructive of these
events occurred overnight on 2–3 March, when a long-tracked

supercell developed in northwestern Tennessee around 0400
UTC just south of a mesoscale convective system (MCS) that
had been tracking northeastward along a stationary front.
This supercell yielded several significant tornadoes as it
moved eastward across northern Tennessee over the next five
hours, including an enhanced Fujita scale (EF) 3 that killed 5
people (220 injured) in the Nashville metropolitan area, as
well as a violent EF4 that killed 19 people (87 injured) near
Cookeville (NOAA/NCEI 2021). The Tennessee supercell
developed while a 700-hPa shortwave moved overhead; the
latter helped to enhance low-level vertical wind shear,
enabling 0–1-km storm-relative helicity (SRH0–1) to locally
exceed 400 m2 s22. Warm-sector mixed-layer CAPE of ∼1000
J kg21 resulted from the advection of an elevated mixed layer
by southwesterly winds ahead of an upper-level trough
anchored over the Central Plains atop seasonally high low-
level moisture that the MCS and its associated surface low
helped to converge along the warm front.

Otherwise, spring 2020 was rather notable for its small
number of Great Plains tornadoes associated with discrete
supercells. The remaining ten cases selected for this study
generally have linear or mixed-mode dominant convective
patterns. Among them, 28 April was the most impactful. On
that day, an intense squall line developed southwestward
along a cold front in central and eastern Oklahoma ahead of
an upper-level trough, and it surged southeastward, generat-
ing widespread damaging winds and a few tornado reports.
Other notable cases include 7 May, which featured an intense
right-moving long-tracked supercell over the Texas panhandle
that produced very large hail, and 22 May, when several tor-
nadic supercells explosively developed in a high-CAPE envi-
ronment near an outflow boundary draped through the Red
River valley.

b. Model configuration

The Realtime WoFS configuration used for the 2020 HWT
SFE consists of a 36-member WRF-ARW version 3.9.1

TABLE 1. Summary of the 2020 severe weather case days analyzed for this study. For each case, the period covered by WoFS
forecasts, maximum SPC risk level from that day’s 1630 UTC outlook within the WoFS real-time domain, number of SPC archived
tornado reports within the real-time domain over the forecast period, primary states affected, primary storm mode, and peak WoFS-
forecast mixed-layer CAPE in regions impacted by severe weather are given. Note that the 3 Mar early morning event is listed using
the previous day because its associated WoFS forecast period occurred during the 2 Mar SPC outlook period. Forecasts from bolded
case days were subjectively evaluated by Spring SFE participants.

Day
Forecast

period (UTC)
SPC risk
level

No. of
tornado reports

Primary states
impacted

Primary storm
mode

MLCAPE
(J kg21)

2 Mar 0000–0800 Slight 18 KY, MO, TN Supercell ∼1000
28 Apr 2000–0400 Moderate 3 AR, MO, OK, TX Linear .3000
4 May 2000–0400 Enhanced 1 AR, KS, MO, OK Mixed .3000
7 May 2000–0400 Slight 0 OK, TX Mixed 2000–3000
13 May 2000–0400 Enhanced 1 OK, TX Mixed 3000
15 May 2000–0400 Enhanced 1 OK, TX Linear 3000
20 May 2000–0400 Enhanced 0 MT, WY Linear 1000–2000
22 May 2000–0400 Enhanced 8 AR, OK, TX Mixed .3000
26 May 2000–0400 Slight 6 IA, IL, MN, WI Mixed 1000–2000
27 May 2000–0400 Enhanced 1 TX Mixed 2000–3000
29 May 2000–0400 Slight 1 MD, NY, PA, VT Mixed 1000–2000
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(Skamarock et al. 2008) ensemble that is cycled every 15 min
from 1500 to 0300 UTC the following day.3 The model uses a
3-km Dx and 51 vertical levels. The High-Resolution Rapid
Refresh Ensemble (HRRRE; Dowell et al. 2016) provides ini-
tial and lateral boundary conditions to the fixed 900 km3 900
km WoFS domain; the latter’s daily position is chosen in col-
laboration with the Spring Forecasting Experiment. The Grid-
point Statistical Interpolation (GSI) ensemble Kalman filter
(EnKF) assimilates the following observation types: conven-
tional; Multi-Radar Multi-Sensor (MRMS) reflectivity and
radial velocity; cloud water path retrievals, atmospheric
motion vectors, and clear-sky radiances from the GOES-16
imager; and any available Oklahoma Mesonet observations.
PBL and radiation physics schemes are varied among the
WoFS members to help increase ensemble spread and
improve reliability, given the tendency for small EnKF
ensembles to be underdispersive compared to the meteoro-
logical “errors of the day” (Houtekamer and Zhang 2016).
Each member uses one of six unique parameterization combi-
nations, which feature either the Yonsei University (YSU;
Hong et al. 2006), Mellor–Yamada–Janjić (MYJ; Mellor and
Yamada 1982; Janjić 2002), or Mellor–Yamada–Nakanishi–-
Niino (MYNN; Nakanishi and Niino 2004, 2006) PBL
schemes and either (i) the Dudhia longwave and Rapid Radi-
ative Transfer Model (RRTM) shortwave schemes, or (ii) the
Rapid Radiative Transfer Model-Global (RRTMG) longwave
and shortwave schemes; see S18 Table 1 for further details.
All members use the NSSL two-moment cloud microphysics
scheme (Mansell et al. 2010) and the RUC land surface model
(Smirnova et al. 2016). The reader can find additional details
of the WoFS in Wheatley et al. (2015), Jones et al. (2016), and
Jones et al. (2020).

For each hour (half hour) beginning at 1700 UTC and run-
ning through 0300 UTC the next day, 6-h (3-h) Realtime
WoFS free forecasts are initialized from cycled analyses mem-
bers 1–18. Additionally, 3-h HIRES free forecasts are initial-
ized hourly over the 2000–0100 UTC period from cycled
analysis members 1–9. The 9-member HIRES configuration
activates a fixed 690 km 3 690 km nest with Dx 5 1.5 km
inside of the Realtime analysis domain at t 5 0 h and two-way
nesting is used through the entire forecast period; all other
HIRES model settings—including the vertical level configura-
tion—are identical to the Realtime settings. WoFS forecast
output for all 2020 SFE cases is available for public display at
https://wof.nssl.noaa.gov/realtime. Examples of HIRES out-
put fields will be shown in section 3b. For the objective analy-
sis methods described in sections 3b–d herein, we only
consider Realtime forecasts that can be directly compared to
a HIRES forecast initialized from the same WoFS analysis,
namely, 3-h forecasts initialized hourly between 2000 and
0100 UTC, members 1–9.

c. Subjective evaluation criteria

Subjective impressions from participants in the 2020 SFE
were collected during next day evaluations, where partici-
pants were asked for feedback on the Realtime and HIRES
ensemble forecasts of UH. Specifically, participants were
asked to rate three initializations of each ensemble (2000,
2200, and 0000 UTC) with the following question: “Please
rate the performance of the following ensembles initialized at
XXXX UTC on a scale of 1 (Very Poor) to 10 (Very Good)
using the hourly products (labeled 1-h in the dropdown prod-
uct selection menu). Consider the ability of the ensemble to
provide useful guidance to a forecaster trying to issue a fore-
cast of severe convective storms.” Then, participants were
asked specifically about different aspects of the forecast that
pertain to operational forecaster concerns: convective mode
and initiation. Finally, participants were asked at each initializa-
tion time whether the HIRES ensemble provided additional
useful information compared to the Realtime ensemble. For
verification, available local storm reports (LSRs) were overlaid
on the forecast output. Since the evaluations took place the day
after event occurrence, the dataset of LSRs available to partici-
pants was incomplete as reports frequently take a week or two
after an event to be fully compiled. However, both ensembles
were evaluated against the same set of reports. See Clark et al.
(2021) for further details.

Two other important differences to note between the sub-
jective and objective analyses completed herein pertain to the
case list and the number of ensemble members used to gener-
ate the probabilistic fields that are being evaluated. While the
objective analyses matched the members between the ensem-
bles (i.e., a subset of 9 Realtime members was compared to
the HIRES members), the subjective evaluation focused
more on the question of whether a smaller ensemble with
finer grid spacing could provide information beyond what a
larger ensemble with coarser grid spacing could. As such, the
SFE participants’ subjective analyses compare the full 18-
member Realtime ensemble to the 9-member HIRES ensem-
ble. Finally, a smaller difference is in the number of cases. As
mentioned previously, the 2 March case was run retrospec-
tively, so SFE participants did not subjectively rate it. For two
additional cases (28 April and 29 May), the data were unavail-
able for participants to make comparisons as part of the SFE.
Thus, the subjective evaluation encompasses eight cases
(Table 1, bolded) compared to the objective evaluation’s 11,
with 65 responses from SFE participants across those cases.

d. Verification dataset

The NSSL MRMS gridded dataset (Smith et al. 2016) is
used for verifying the location and timing of WoFS-forecast
storms. MRMS is a real-time 0.018 3 0.018 analysis on a latitu-
de–longitude grid covering the contiguous United States,
updated every 2 min, that composites observations from
the WSR-88D Doppler radar network. When considering
all thunderstorms, we use MRMS composite reflectivity
(REFLCOMP) interpolated to the WoFS grid as a proxy for
storm intensity. We separately verify WoFS forecasts of low-
level and midlevel mesocyclones using the MRMS azimuthal

3 The 2 March case was an exception since it was an overnight
event that occurred prior to the 2020 SFE period. WoFS was cycled
retrospectively starting from the 1200 UTC 2March HRRRE initial
conditions and continuing through 0800 UTC 3March.
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wind shear product computed over the 0–2 km AGL layer
(hereafter AWS0–2) and 2–5 km AGL layer (hereafter
AWS2–5), respectively. Following Miller et al. (2013) and S18,
we interpolate the MRMS-derived AWS0–2 and AWS2–5 data
to the WoFS grid every 5 min and then construct “rotation
tracks” by computing the maximum AWS0–2 and AWS2–5 at
each gridpoint over the previous 30-min period. To mitigate
the impacts of spurious noise, extensive quality control is per-
formed when generating the AWS0–2 and AWS2–5 analyses.
For example, only the WSR-88D radial velocities collocated
with quality-controlled reflectivity exceeding 20 dBZ are used
in the azimuthal wind shear calculation; see S18 for further
details. MRMS rotation tracks are compared against 30-min
swaths of WoFS-forecast gridpoint maximum UH0–2 and
UH2–5. To simplify the deterministic storm object matching
algorithm (described in section 2f), separate MRMS verifica-
tion datasets are used for Realtime and HIRES forecasts.
MRMS fields are interpolated from their native latitude–lon-
gitude grid to the Realtime domain and HIRES nest using a
Cressman scheme with a 3-km radius of influence. Visual
comparison of the Dx 5 3 km and Dx 5 1.5 km interpolated
MRMS datasets (not shown) reveals that differences are
quite small and unlikely to influence the deterministic
object-based Realtime and HIRES WoFS verifications
described in section 3b.

e. Deterministic storm object identification

CAM ensemble forecasts of thunderstorms, particularly those
in cellular and mixed convective modes, present a unique verifi-
cation challenge due to the large volume of output data and the
large number of features needing to be tracked. While subjec-
tive human evaluation will always have value, it should be com-
plemented with objective verification methods that can provide
quantitative analysis of model errors and their statistical signifi-
cance. Traditional point-to-point verification techniques, such
as a root-mean-square error (RMSE) computed over a forecast
domain, unduly penalize small forecast storm position and/or
timing errors even when the model resolves a storm’s structure
well (Potvin et al. 2017). Furthermore, severe thunderstorms
are by nature rare events that typically occupy only a small frac-
tion of a forecast grid.

Therefore, like other recent WoFS forecast verification
studies (S18; F19; Potvin et al. 2020; L21), we use an auto-
mated object-based verification technique to evaluate the
WoFS deterministic and probabilistic forecast skill. We use
the Python Scikit-image software (Van der Walt et al. 2014)
to identify “storm objects” as contiguous regions on a two-
dimensional WoFS forecast or MRMS analysis grid where
field values of a variable measuring storm intensity exceed a

predetermined threshold. Forecast storm objects can then be
matched to observed storm objects. The major advantages of
using an object-based framework over traditional gridpoint-
based forecast verification techniques include the former’s
focus on rare but significant events and its tolerance for small,
operationally acceptable errors in forecast storm timing and
location. However, one disadvantage of object-based verifica-
tion techniques is their sensitivity to tunable object identifica-
tion and matching parameters.

Storm objects defined using the composite reflectivity
(REFLCOMP) field are treated as proxies for all types of
thunderstorms. Our object identification methodology is
based upon the assumption that a perfect forecast produces
an identical areal footprint in the forecast and verification
fields. Model-output reflectivity is sensitive to the microphys-
ics parameterization and other sources of model bias; there-
fore, REFLCOMP object boundary thresholds are defined
separately for Realtime, HIRES, and MRMS datasets.
REFLCOMP object thresholds are also defined separately for
WoFS members using different PBL physics parameteriza-
tions given the WoFS forecast sensitivity to the latter (Potvin
et al. 2020). After collecting REFLCOMP values from all
eleven 2020 cases (Table 1) at all grid points and 5-min verifi-
cation times, we set REFLCOMP object boundary thresholds
to the 99th percentile value. Midlevel (low-level) rotation
track objects boundaries are set to the 99.95th percentile of
the 2020 WoFS UH2–5 and MRMS AWS2–5 (UH0–2 and
AWS0–2) field climatologies, respectively. Our Realtime
REFLCOMP, UH2–5 and UH0–2 object identification thresh-
olds generated from the 2020 seasonal climatology (Table
2) show good agreement with those computed for the 2016
and 2017 WoFS by S18 using a similar method (see their
Fig. 3). HIRES REFLCOMP thresholds exceed Realtime
REFLCOMP thresholds by ∼3 dBZ, perhaps a result of
enhanced condensation and freezing in the stronger HIRES
updrafts (see section 3d). The stronger HIRES updrafts
also partially account for the significantly higher UH0–2 and
UH2–5 thresholds in HIRES.

Quality control checks are performed on all WoFS and
MRMS storm objects prior to object matching. Only Realtime
and HIRES storm objects found inside of a 20-km-wide buffer
zone surrounding the Dx5 1.5 km nest boundaries are retained.
Additional checks are designed to reject spurious MRMS fea-
tures or excessively small forecast objects not likely to produce
severe weather. A minimum area threshold of 144 (100) km2 is
applied to REFLCOMP (rotation track) storm objects, and any
storm objects separated by less than 10 km are grouped as a sin-
gle object. Additionally, rotation track objects are checked to
ensure that they are built from 5-min data “elements” that

TABLE 2. Object identification variable intensity threshold values used for this study. Realtime and HIRES values are listed as
pairs delimited by the “/” symbol, with the latter given in italic font.

Dataset REFLCOMP (dBZ) UH2–5 (m
2 s22) or AWS2–5 (s

21) UH0–2 (m
2 s22) or AWS0–2 (s

21)

WoFS YSU 45.9/48.6 63.2/138.2 15.9/35.4
WoFS MYJ 45.5/48.3 64.0/145.0 15.6/36.2
WoFS MYNN 46.0/48.6 67.3/149.7 16.3/36.9
MRMS 39.8/40.9 0.0039/0.0041 0.0036/0.0038
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come from at least two consecutive verification times. Any rota-
tion track object composed of at least two elements with eccen-
tricity exceeding 0.9 and length exceeding 25 km is also rejected
based on the expectation that it is an advancing linear gust front
feature rather than a mesocyclone. Imposing this criterion
resulted in removal of numerous 28 April UH0–2 objects with
linear morphology that were not associated with any tornado
reports. Figure 1 shows a set of quality-controlled low-level
rotation track objects taken from a 2 March HIRES forecast
ensemble member.

f. Deterministic object-based verification

Forecast storm objects are matched to observed storm
objects using S18’s algorithm, which they adapted from the
Method for Object-based Diagnostic Evaluation software tool
(MODE; Davis et al. 2006a,b). The algorithm is applied to
each ensemble member at every 5-min forecast verification
time in a two-step process. First, each observed storm object
is compared against all forecast storm objects taken from a
620-min surrounding time window. For each possible forecast–
observed storm object pair, the S18 total interest (S18 TI) score
is computed as

S18 TI5

cdmax 2 cd
cdmax

( )
1

mdmax 2md
mdmax

( )
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ tmax 2 t

tmax

( )
, (1)

where cd is their centroid distance; md is their minimum dis-
tance; t is their time difference; and cdmax 5 40 km, mdmax 5

40 km, and tmax 5 20 min are the maximum allowed centroid
displacement, minimum displacement, and time difference,
respectively. All object pairs with S18 TI scores exceeding 0.2
are catalogued. If any observed objects are matched to multi-
ple forecast objects, the matched pair with the highest S18 TI
score is selected. Each forecast object from within the time
window can be matched only once. Out of the total number

of observed objects NOBS,TOTAL, the number of matched
observed objects NOBS,MATCHED (i.e., “hits”) are tallied;
“misses” are the residual. The second step repeats the pro-
cess, except that now each forecast storm object is compared
to all observed storm objects taken from within a 620-min
surrounding time window, yielding the ensemble member’s
total number of forecast storm objects NFC,TOTAL, number of
matched forecast storm objects NFC,MATCHED, and number of
“false alarms,” equivalent to NFC,TOTAL 2 NFC,MATCHED

Deterministic probability of detection (PODDET), false alarm
ratio (FARDET), bias (BIASDET), and critical success index
(CSIDET) scores are then computed as

PODDET 5
NOBS;MATCHED

NOBS;TOTAL
, (2a)

FARDET 5
NFC;TOTAL 2 NFC;MATCHED

NFC;TOTAL
, (2b)

BIASDET 5
NFC;TOTAL

NOBS;TOTAL
, (2c)

CSIDET 5
NFC;MATCHED

NFC;TOTAL 1NOBS;TOTAL 2NOBS;MATCHED
·
(2d)

g. Probabilistic object-based verification

Probabilistic CAM ensemble forecast guidance has tradition-
ally been interpreted in terms of the likelihood of an event
occurring within a prescribed neighborhood around each grid-
point, commonly referred to as the neighborhood maximum
ensemble probability (NMEP; Schwartz and Sobash 2017).
“Likelihood” is typically defined by the ensemble probability—

FIG. 1. (a) Maximum UH0–2 values (m
2 s22; shaded) taken from the t 5 30–60-min forecast period for the HIRES

ensemble member 1 forecast initialized at 0500 UTC 3Mar. Black contours enclose regions where UH0–2 exceeds the rota-
tion track object identification threshold (Table 2). (b) Quality-controlled low-level rotation track objects, differentiated by
color shading, derived from the UH0–2 field shown in (a). Black dot symbols in (a) and (b) denote Nashville’s location.
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the number of ensemble members forecasting a binary outcome
(e.g., did total accumulated rainfall exceed 1 in.?) at a point or
within a neighborhood divided by the ensemble size—[Schwartz
and Sobash 2017; see their Eq. (4)]. For next-day CAM ensemble
output, computing forecast probabilities using this neighbor-
hood-based “spatial” approach and subsequent spatial smooth-
ing helps to correct for (i) expected loss of gridscale accuracy at
longer lead times and for (ii) the well-documented problem of
poor CAM ensemble reliability, where insufficient ensemble
spread yields forecast likelihoods of storm-related events that
exceed their conditional event frequencies (F19). However, F19
showed how spatial probabilities may not be appropriate on their
own for short-range WoFS forecasts because the spatial smooth-
ing removes finer-scale details that may be of interest to forecast-
ers at 0–3-h lead times. Additionally, F19 pointed out how
forecasting the probability that a given thunderstorm will produce
a mesocyclone, a keyWoFS operational objective, is conceptually
quite different from forecasting the probability that a given grid-
point will experience a mesocyclone event.

Here, we adopt the alternative probabilistic verification
approach developed by F19 that is based on “event” probabil-
ities rather than traditional spatial probabilities. Essentially,
event probabilities in this study predict the likelihood that a
given simulated thunderstorm will produce a mesocyclone
within the uncertainty of storm location predicted by the
ensemble. Unlike the probabilistic CAM verification methods
reviewed by Schwartz and Sobash (2017), this method does
not use a prescribed isotropic neighborhood or smoothing
technique. Instead, the “neighborhood” is determined aniso-
tropically by the WoFS ensemble spread—more ensemble
spread results in a larger region of storm location uncertainty.
The trade-off for the event-based method, though, is the
inability to account for missed observations where the WoFS
does not predict the occurrence of a storm (Flora et al. 2021).

Quality-controlled forecast rotation track objects (i.e., 30-min
UH2–5 and UH0–2 swaths; section 2e) from individual members
are transformed into forecast probability swath objects in a two-
step process. First, raw gridscale two-dimensional mesocyclone
probability fields are generated for the set of overlapping 30-min
forecast periods staggered every 15 min, i.e., t 5 0–30 min, t 5
15–45 min, t 5 30–60 min, … , t 5 150–180 min. For each grid-
point i and ensemble member j, binary probabilities BPij are
defined in terms of whether i belongs to the set of gridpoints Sj
contained within member j’s 30-min rotation track objects:

BPij 5
1, if i ∈ Sj

0, if i =∈ Sj
·

{
(3)

A two-dimensional ensemble probability field EPi is then
defined as the fraction of the N 5 9 ensemble members that
produce a rotation track overlapping with gridpoint i:

EPi 5
1
N

∑N
j5 1

BPij · (4)

Although no further postprocessing is applied to the Realtime
EP fields, the HIRES EP fields are “upscaled” to the 3-km grid
by applying a NMEP filter with a 3 3 3 gridpoint box; the latter

step ensures a fairer comparison between the Realtime and
HIRES output, in part because it compensates for the fact that
mesocyclone tracks are less likely to overlap a single gridpoint
when grid spacing is reduced. Grid staggering effects should be
negligible, given that our focus is on contiguous objects rather
than on gridpoint-based verification. In this study, we identify
the probability objects from the EP field using the two-step
watershed algorithm developed in Flora et al. (2021), which is
an updated version of the algorithm presented in F19 (see Flora
et al. 2021 section 3a for a detailed description of the probability
object identification algorithm and its parameter settings). Each
probability swath object is assigned a single forecast probability
value corresponding to the maximum EP within its boundaries.

To compare Realtime and HIRES WoFS probabilistic meso-
cyclone forecast skill, sets of UH2–5 and UH0–2-derived proba-
bility swath objects are matched to their layer-equivalent
quality-controlled observed rotation track objects (i.e., 30-min
AWS2–5 or AWS0–2 swaths; section 2e) as for the deterministic
verification (section 2f). However, for the probability objects,
cdmax and mdmax are set to 0 km—thus providing a more con-
servative probabilistic skill estimate (F19)—and tmax 5 15 min.
Probability swath object matching applied separately to Real-
time and HIRES forecasts yields total numbers of “hits,”
“misses,” and “false alarms” for each probability threshold p;
these quantities are then used for computing the probabilistic
contingency table metrics PODPROB, FARPROB, BIASPROB,
and CSIPROB via a set of equations analogous to Eqs. (2a)–(2d).

We also test the Realtime and HIRES probabilistic meso-
cyclone forecasts for reliability, where a forecast ensemble is
considered reliable if it generates forecast probabilities that
are reasonably consistent with their conditional event fre-
quencies. To compute the reliability of the forecast ensemble
probabilities, the probabilities are separated into bins based
on their number of ensemble members (e.g., p 5 1/9, 2/9, … ,
9/9) from which we compute the mean forecast probabilities
and conditional event frequencies, where the latter is the frac-
tion of probabilistic objects for a given bin that are matched
to an observed swath. For confidence intervals, the set of fore-
cast probabilities and observed data (i.e., whether a forecast
probability swath is matched to an observed track) are boot-
strapped (Nboot 5 1000) and the mean forecast probabilities
and conditional event frequencies are recomputed. We con-
sider probabilistic mesocyclone forecasts at threshold p to be
reasonably reliable (probably unreliable) if the mean value of
the Nboot-sized conditional observed frequency distribution
falls inside (outside) of a range of “reliable” conditional fre-
quencies known as consistency bars, defined using the method
of Bröcker and Smith (2007). Consistency bars account for
Np-dependent uncertainties in the conditional observed fre-
quencies computed from the forecast and observation data-
sets. They span the 2.5%–97.5% quantiles of a surrogate
observed frequency distribution generated by a second boot-
strap resampling (Nboot 5 1000) of the Np probability swath
objects. For each resampling iteration, an Np-sized set of sur-
rogate event observations Ŷ i, i5 1, … , Np is generated, using

Ŷ i 5
1, if Zi ,p
0, else

,
{

(5)
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where Zi is a series of uniformly distributed random variables
ranging between zero and one, yielding a surrogate observed
frequency

∑Np

i51 Ŷ i=Np.

3. Results

a. Subjective forecaster impressions

SFE participant impressions of the HIRES versus Realtime
WoFS were mixed. The largest difference between the ensem-
bles from the targeted questions asked regarding convective
initiation, timing, and mode, was in the realm of convective
initiation. Participants noted that the 1.5-km ensemble at any
given initialization tended to initiate convection sooner than
the corresponding 3-km initialization, which was more fre-
quently rated “about right” or “too slow” in terms of convec-
tive initiation. However, for most cases convection was
already ongoing (Fig. 2a). Overall, 1–10 ratings of the fore-
casts were very similar between the 18-member Realtime and
9-member HIRES ensembles (Fig. 2c), with larger differences
occurring between initialization times of the same ensemble
compared to between the ensembles at the same initialization
time. Thus, it is unsurprising that the participants responded
to the question “At XX00 UTC, does the experimental 1.5-
km ensemble provide additional useful information compared
to the Realtime 3.0-km ensemble?” most frequently with
“Might or might not” or “Probably not” (Fig. 2b). However,
additional input collected via open-ended comments reveals
important differences between the ensembles at specific
times. For example, on both 7 and 13 May, participants men-
tioned that the Realtime ensemble could capture storms that

the HIRES missed, and on 26 May a participant noted that
the increased structure in the HIRES storms provided better
indication of storm severity.

In their open-ended comments, participants also frequently
mentioned the higher intensities provided by the HIRES com-
pared to the Realtime ensemble, specifically in maximum
UH2–5 values and wind speeds, and that they did not know how
much of these intensity differences resulted from the different
model climatologies arising from the differing grid spacings ver-
sus case-dependent differences in the strength of the storms
depicted by each ensemble. As such, it will be important in
future subjective comparisons to carefully consider the display
and contouring of output from ensembles with different grid
spacings, particularly since current operational CAMs such as
the HREF ensemble and its members use a 3-km grid spacing.
Given that forecasters are currently most familiar with the
range of UH values produced by a 3–4-km model Dx, they may
have difficulty determining what a “high” UH value would be
for HIRES output. Using percentile thresholds compared to
fixed values and carefully considering color curves will help
ensure comparisons that look beyond stronger magnitudes pro-
vided by higher horizontal grid resolutions to differences in
storm placement, structure, and intensity.

b. Deterministic object-based verification

Figure 3 compares Realtime and HIRES reflectivity object
PODDET, FARDET, CSIDET, and BIASDET time series, where
thin “spaghetti” lines show data for a single ensemble mem-
ber averaged over all 11 cases. In general, Realtime and
HIRES reflectivity object PODDET, FARDET, and CSIDET

FIG. 2. Results from subjective evaluation conducted by participants in the 2020 SFE, including (a) responses to the question: “How do
the following ensembles initialized at XX00 UTC depict convective initiation?”; (b) responses to the question “At XX00 UTC, does the
experimental 1.5-km ensemble provide additional useful information compared to the Realtime 3.0-km ensemble?,” and (c) ratings of
each ensemble’s forecast at three different initializations on a scale of 1–10.
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show little difference (Figs. 3a–c). However, we do find a
modest, albeit statistically significant, ∼0.02 magnitude reduc-
tion in HIRES CSIDET compared to Realtime over the t 5
20–50-min period (Fig. 3c) which results from a greater
HIRES over-forecasting bias (Figs. 3b,d); recall that the SFE
participants noted a tendency for HIRES to initiate convec-
tion more quickly compared to Realtime (section 3a). Here
we consider differences between the HIRES and Realtime
forecasts to be statistically significant if both (i) the HIRES
ensemble mean falls outside of a 95% confidence interval gen-
erated by bootstrap resampling (Nboot 5 1000; Wilks 2011) of
the Realtime data over all members and cases, using a 15-min
data binning interval; and (ii) a permutation test run on the
Realtime and HIRES bootstrapped distributions yields a p
value of ,0.05. Interestingly, HIRES forecasts begin showing
a statistically significant ∼15% lower (i.e., improved) ensem-
ble mean BIASDET after t 5 60 min (Fig. 3d). Table 3 shows
that Realtime and HIRES reflectivity object time-averaged
ensemble mean CSIDET are quite similar for most individual
cases. As previously stated, many of our 11 cases are mixed-
mode dominant (Table 1), and so our set of Realtime and

HIRES reflectivity objects includes a significant contribution
from linear structures (not shown) that should be more pre-
dictable than cellular objects. We should keep in mind that
our reflectivity object CSIDET verification considers only their
occurrence. It is possible that reducing the WoFS Dx to 1.5 km
may improve representation of finer-scale structures within
these reflectivity objects important to severe weather genera-
tion, a topic that we shall explore in section 3d.

Turning to the midlevel rotation track objects (Fig. 4), we
find more notable improvement in HIRES skill relative to
Realtime forecasts. HIRES ensemble mean midlevel rotation
track object PODDET exceeds that of Realtime forecasts by
∼0.1 throughout the verification period—which is statistically
significant (Fig. 4a), whereas the two configurations show lit-
tle difference in midlevel rotation track object FARDET (Fig.
4b). Thus, the HIRES ensemble mean midlevel rotation track
object CSIDET exceeds that of Realtime forecasts by a statisti-
cally significant ∼0.05 throughout the verification period (Fig.
4c). Both Realtime and HIRES midlevel rotation track object
CSIDET scores are substantially lower than their respective
reflectivity object CSIDET scores, similar to what S18 found.

FIG. 3. Forecast time series of (a) PODDET, (b) FARDET, (c) CSIDET, and (d) BIASDET for Realtime (blue) and
HIRES (orange) reflectivity objects. Data for each ensemble member are averaged among the eleven 2020 cases
shown in Table 1. Thin lines show individual members and thick lines show the ensemble mean. Plots are annotated
with the total numbers of Realtime and HIRES reflectivity objects generated for all 11 cases at all 5-min model output
times. Black horizontal lines above the abscissa denote time intervals where the Realtime and HIRES ensemble mean
differences are statistically significant, as determined by a bootstrap resampling method (see text for details). Note that
the deterministic object contingency table metrics are not computed for the first and last 20 forecast minutes because
the object matching algorithm uses a t5620-min time window (section 2d).
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Differences between Realtime and HIRES low-level rotation
track forecasts show a similar pattern (Fig. 5), with HIRES
having a statistically significant higher ensemble mean CSIDET

prior to t 5 120 min (Fig. 5c), driven by a higher ensemble
PODDET (Fig. 5a). The modest improvement in low-level

mesocyclone detection attained when WoFS Dx is reduced
from 3 to 1.5 km is consistent with Potvin and Flora (2015),
who found that 1-km or smaller grid spacing was necessary
for properly capturing the timing and intensity of low-level
mesocyclones in their idealized simulated supercells. How-
ever, reducing WoFS Dx to 1.5 km also tends to increase the
low- and midlevel mesocyclone over-forecasting bias (Figs.
4d, 5d).

Figure 6 shows performance diagrams (Roebber 2009)
comparing Realtime and HIRES t 5 120-min reflectivity and
rotation track object contingency table metrics computed sep-
arately for each member and case day. No cases show any
notable improvement in reflectivity object forecast CSIDET at
t 5 120 min (Fig. 6a). The 7, 13, 26, and 27 May cases appear
to drive the improved (i.e., lower) HIRES reflectivity object
over frequency bias at later forecast times (Fig. 3d; Table 4).
For midlevel rotation track objects, the 2 March, 28 April,
and 4, 13, 15, and 22 May cases’ CSIDET scores show the most
improvement with reduced horizontal grid spacing (Fig. 6b;
Table 3). Of these cases, 13, 15, and 22 May show the most
improvement in their low-level rotation track object CSI
scores when Dx is reduced (Fig. 6c; Table 3). Interestingly,
although the 0300 UTC 3 March initialized HIRES 3-h fore-
cast shows a stronger (as compared to Realtime) signal for
the development of the supercell in northwestern Tennessee

FIG. 4. As in Fig. 3, but for midlevel (2–5 kmAGL) rotation track objects. Since rotation track objects are built using
forecast data from the prior 30 min and a t5620-min time window is used for object matching (section 2d), determin-
istic contingency table metrics are not computed prior to t5 50 min.

TABLE 3. Ensemble mean CSIDET, averaged over all 5-min
verification times (t 5 20–160 min for reflectivity objects and t 5
50–160 min for rotation track objects), for each of the 2020 SFE
case days. Realtime and HIRES values are listed as pairs
delimited by the “/” symbol, with the latter given in italic font.

Day

REFLCOMP
deterministic

objects

UH2–5

deterministic
objects

UH0–2

deterministic
objects

2 Mar 0.50/0.50 0.28/0.35 0.33/0.36
28 Apr 0.43/0.40 0.35/0.41 0.28/0.27
4 May 0.62/0.64 0.35/0.43 0.26/0.29
7 May 0.40/0.38 0.43/0.40 0.46/0.43
13 May 0.47/0.46 0.08/0.13 0.08/0.14
15 May 0.53/0.54 0.28/0.38 0.19/0.30
20 May 0.35/0.27 0.10/0.13 0.05/0.07
22 May 0.32/0.32 0.25/0.31 0.28/0.33
26 May 0.44/0.45 0.00/0.00 0.01/0.06
27 May 0.51/0.51 0.29/0.32 0.25/0.28
29 May 0.45/0.44 0.08/0.10 0.03/0.08
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(Figs. 7a–c) that produces the Nashville tornado (section 2a),
the Realtime forecast initialized an hour later captures this
supercell track quite well and the HIRES forecast shows lit-
tle further improvement (Figs. 7d–f). The spurious south-
easterly moving supercell forecast by the 0300 UTC
initialized HIRES ensemble (Fig. 7b) also illustrates an
example of the tendency for HIRES to over-forecast low-
level rotation (Fig. 5d).

No obvious patterns in the CAPE regimes (high versus
low) or convective mode characteristics appear to distinguish
the cases where reducing Dx to 1.5 km improved the time-
averaged ensemble mean CSIDET score (cf. Tables 1 and 3).
We should note, however, that except for 2–3 March, our
cases tend to be mixed-mode dominant; further work is
needed to more fully assess the impact of reduced Dx on more
“classic” Plains region supercells. The extremely low midlevel
and low-level rotation track object CSIDET scores for 26 and
29 May (Figs. 6b,c; Table 3) reflect the fact that these low-
CAPE cases tended to produce weak updrafts (not shown)
and, thus, very few of their forecast storm UH values
exceeded the object identification thresholds tied to the 2020
seasonal case climatology.

c. Probabilistic object-based verification

Figures 8 and 9 show performance diagrams for midlevel
and low-level UH probability swath objects, respectively.

Realtime and HIRES probability swath objects generated
from all case days and initialization times are separately
aggregated into early-verification (t 5 0–90 min) and late-ver-
ification (t 5 90–180 min) forecast period “batches.” For each
batch, all Np probability swath objects sharing the same
ensemble probability p (e.g., 1/9, 2/9, … ) are matched to
observed rotation track objects (section 2g), yielding an Np-
length vector of binary outcomes where 1 and 0 denote a
match and nonmatch, respectively. The binary outcome vec-
tor is resampled with replacement Nboot 5 1000 times, and for
each bootstrap iteration, a set of equations analogous to Eqs.
(2a)–(2d) are used to assign PODPROB, FARPROB, CSIPROB

and BIASPROB scores to the Np objects. Figures 8 and 9 show
the mean performance diagram curve and its surrounding
95% confidence interval. In addition, the normalized area
under the performance curve (NAUPDC) and normalized
CSI (NCSI) are provided for both the Realtime and HIRES
ensembles (Flora et al. 2021). NAUPDC and NCSI are
defined as

NAUPDC5
AUPDC2 c

12 c
, (6a)

NCSI5
CSI2 c
12 c

, (6b)

where c is the “skew” (Boyd et al. 2012; Lampert and
Gançarski 2014; Flora et al. 2021), which in this case is equal

FIG. 5. As in Fig. 3, but for low-level (0–2 km AGL) rotation track objects.
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to the fraction of all probability swath objects that are
matched. AUPDC is computed with the following formula:

AUPDC5
∑K
k5 1

PODk 2PODk2 1( )SRk, (7)

where k 5 1, … , K indexes the ensemble probability thresh-
olds (i.e., 1/9, 2/9, etc.) and SRk 5 1 2 FARk. The normaliza-
tion is with respect to a low-skill baseline, and thus NAUPDC
and NCSI are skill scores similar to the Brier skill score where
positive (negative) values indicate performance better
(worse) than the baseline (values near zero indicate similar
performance). Note that our decision to use AUDPC as a
probabilistic forecast skill verification metric rather than the
commonly used receiver operating characteristic (ROC)
curve is based on the former being more appropriate for the
prediction of rare events (Davis and Goadrich 2006; Saito and
Rehmsmeier 2015).

Comparing the Realtime and HIRES t 5 0–90-min midle-
vel UH probability swath object forecasts (Fig. 8a), we find a
larger HIRES CSIPROB for all ensemble probability thresh-
olds, particularly for the p 5 3/9, 6/9, 7/9, and 8/9 probabilities
(see annotated circles in Fig. 8). At lower probabilities (e.g.,
p 5 3/9), an increased HIRES PODPROB drives the CSIPROB

improvement relative to the Realtime WoFS, whereas for
higher probabilities (e.g., p 5 7/9 and p 5 8/9), the CSIPROB

improvement is more driven by HIRES’s reduced FARPROB.
Realtime and HIRES t 5 0–90-min midlevel UH probability
swath object CSIPROB are both maximized at p 5 4/9, where
their respective mean values are ∼0.38 and ∼0.4.

FIG. 6. (a) Performance diagram of t 5 120-min forecast
reflectivity object PODDET and success ratio (SRDET 5 12
FARDET), where each symbol denotes a different case day.

←−
Blue and orange colors are used for Realtime and HIRES
forecasts, respectively. Labeled curved contours and
straight lines denote constant CSIDET and BIASDET,
respectively. Small and large symbols denote individual
members and the ensemble mean, respectively. (b) As in
(a), but for midlevel (2–5 km AGL) rotation track objects.
(c) As in (a), but for low-level (0–2 km AGL) rotation
track objects.

TABLE 4. As in Table 3, but for ensemble mean BIASDET.

Day

REFLCOMP
deterministic

objects

UH2–5

deterministic
objects

UH0–2

deterministic
objects

2 Mar 1.44/1.40 0.55/0.88 0.71/0.90
28 Apr 1.08/1.05 2.13/1.90 1.25/1.04
4 May 1.43/1.47 1.89/1.90 1.60/1.89
7 May 1.24/1.13 1.74/2.24 1.49/1.50
13 May 1.25/1.00 0.37/0.55 0.39/0.67
15 May 1.30/1.14 0.90/0.97 0.50/0.67
20 May 0.93/0.77 0.68/1.02 1.29/2.05
22 May 1.74/1.73 1.13/1.36 1.20/1.17
26 May 2.00/1.75 0.80/0.93 0.28/0.54
27 May 1.48/1.40 1.21/1.22 1.10/1.07
29 May 1.84/1.73 0.81/1.58 0.35/1.46
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For most probability thresholds, Realtime and HIRES mid-
level UH CSIPROB becomes smaller at t5 90–180 min relative
to the previous 90-min period (cf. Figs. 8a, 8b), similar to the
trend found in F19; this is not surprising, given our expecta-
tion for mesocyclone predictability to decrease at longer fore-
cast lead times. However, we find considerably less HIRES
improvement over the Realtime WoFS for midlevel UH CSI-
PROB over the t 5 90–180-min period (Fig. 8b). Given that our
event-based mesocyclone probability framework is contingent
on the parent thunderstorm having already formed (section
2g), it is possible that (i) the increased positional displacement
of the same storm resolved in different members and (ii) the
dissipation of some storms at later lead times renders the
increased grid resolution less effective in improving probabil-
istic midlevel UH forecast skill after t 5 90 min. Low-level
UH probability swath objects, on the other hand, show no
improvement in t 5 0–90-min CSIPROB with smaller Dx for
most ensemble probabilities (Fig. 9a).

Using a permutation test (Wilks 2011), we find that com-
pared to the Realtime ensemble, HIRES has a statistically
significant (p value ∼0.001): (i) higher (i.e., improved)
NAUPDC and NCSI for midlevel UH probability swaths
over the full forecast period; (ii) higher (i.e., improved) NCSI
for t 5 90–180-min low-level UH probability swaths; and (iii)

lower (i.e., degraded) NAUPDC and NCSI for t 5 0–90-min
low-level UH probability swaths. F19 found lower CSIPROB val-
ues (below 0.3 for all ensemble probabilities) for 2017 and 2018
3-km WoFS UH probability swath objects matched to observa-
tions using a similar method; differences between their results
and those for the 2020 Realtime WoFS shown in Figs. 8 and 9
could result in part from the lack of time difference tolerance
used by F19 in their probabilistic object matching.

Next, we compare the reliability of Realtime and HIRES
forecasts. Figure 10a shows that both Realtime and HIRES
midlevel UH probability swath object t 5 0–90-min forecasts
are generally overconfident, which could be attributable to
WoFS underdispersive behavior also noted by F19. Recall
from section 2g that the consistency bars provide a range of
conditional event frequencies indicative of a plausibly reliable
forecast. As explained in Bröcker and Smith (2007), consistency
bar length tends to be inversely proportional to sample size,
which is why the Realtime and HIRES consistency bars become
longer at higher probability thresholds where fewer midlevel
UH probability swath objects are generated, as shown in
Fig. 10a.

However, both ensembles’ UH probability swath forecasts
generally become more reliable for later forecast lead times
(t 5 90–180 min; Fig. 10b), perhaps due to high-probability

FIG. 7. (a) Realtime (RT) WoFS-forecast UH0–2 90th percentile swaths (color shaded; m2 s22) from the 0300 UTC 3Mar initialized fore-
cast, generated using data collected from all 18 ensemble members over the t5 0–3-h forecast period. “Paintball” objects where composite
reflectivity exceeds 40 dBZ (gray shading; darkness increases with number of overlapping ensemble members), and probability-matched
mean (PMM; Ebert 2001) composite reflectivity (dBZ; black contours), both from t 5 3 h, are also shown. (b) As in (a), but for the 0300
UTC 3 Mar initialized 9-member HIRES WoFS forecast. (c) MRMS composite reflectivity (color shaded; dBZ) from 0600 UTC 3 Mar
and AWS0–2 (0.004 and 0.008 s21 in gray and black shading, respectively) temporal maximum-value swaths taken from the 0300–0600
UTC period. (d),(e) As in (a) and (b), but for the 0400 UTC 3 Mar initialized Realtime and HIRES forecasts, respectively. (f) As in (c),
but for MRMS composite reflectivity valid at 0700 UTC 3 Mar and AWS0–2 swaths from 0400 to 0700 UTC 3 Mar. Red triangles in (c) and
(f) mark locations of SPC local tornado reports recorded during their respective 3-h AWS0–2 compositing windows. Letters A and B label
the track of the Nashville, TN, supercell and a spurious southeastward-moving supercell, respectively; both are discussed in the text. Black
dot symbols in (a)–(f) denote Nashville’s location.
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objects becoming rarer as different member forecasts of the
same storm event become more spatially separated; F19
reported a similar trend for 2017/18 WoFS midlevel UH prob-
abilistic forecasts (see their Fig. 7). The positive Brier skill
score (BSS; Wilks 2011) for both Realtime and HIRES midle-
vel UH probabilistic forecasts over the full forecast period

(Figs. 10a,b) suggests that both ensembles have sufficient skill
and reliability to outperform a minimally skilled climatologi-
cal forecast; these differences are statistically significant (p
value ∼ 0.001 using a permutation test). A reliability diagram
comparing Realtime and HIRES low-level UH probability
swaths (not shown) resembles Fig. 10.

FIG. 9. As in Fig. 8, but for low-level (0–2 km AGL) UH probability swath objects.

FIG. 8. (a) Performance diagram for the set of WoFS-forecast midlevel (2–5 kmAGL) UH probability swath objects
generated from the 0–30-, 15–45-, 30–60-, 45–75-, and 60–90-min forecast time intervals. Each subset of midlevel prob-
ability swath objects sharing a common probability threshold (e.g., 1/9, 2/9, … ) is resampled using bootstrapping,
yielding a mean PODPROB and SRPROB, denoted by a circle annotated with the threshold value, and a 95% confidence
interval surrounding the mean (shaded area). Blue and orange colors show Realtime (RT) and HIRES forecasts,
respectively. Blue shaded contours and dotted black lines plot CSIPROB and BIASPROB, respectively. The X symbols
denote the ensemble probabilities with maximum CSIPROB. The gray region shows a hypothetical minimal-skill fore-
cast AUPDC described by Eq. (6); the vertical line bounding it to the right marks the base rate. (b) As in (a), but for
midlevel probability swath objects generated from the 75–105-, 90–120-, 105–135-, 120–150-, 135–165-, and 150–180-
min forecast time intervals.
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d. Storm-scale characteristics

Finally, the sensitivity of WoFS forecast storm characteris-
tics to reducing Dx by a factor of 2 will be briefly explored.
Figure 11a compares Realtime and HIRES forecast time

series of column-maximum updraft speed (hereafter wMAX)
averaged over reflectivity objects from all 11 cases. Both Real-
time and HIRES reflectivity objects tend to experience a
wMAX spike over the first 15 forecast minutes, likely a result
of storm-scale model spinup. After t 5 30 min, object-

FIG. 11. (a) Time series of Realtime (blue) and HIRES (orange) forecast column-maximum w (m s21), averaged
first over each reflectivity object and then among reflectivity objects from all 11 cases generated at each 5-min model
output time (thick solid lines). Thin dashed lines bound the 61 standard deviation range of Realtime (blue) and
HIRES (orange) reflectivity object-averaged column-maximum w surrounding their respective mean values, when
considering the forecast time-dependent distribution of reflectivity objects generated from all 11 cases. (b) As in (a),
but for reflectivity object major axis length (km).

FIG. 10. (a) Reliability diagram for midlevel (2–5 km AGL) UH probability swath objects aggregated over 30-
min forecasts every 15 min with valid times up to 90 min (e.g., 0–30, 15–45, … , 60–90 min). Blue (orange) curves
plot mean values of the Realtime (HIRES) bootstrapped conditional event frequency distributions on the y axis,
computed for each ensemble probability threshold (e.g., 1/9, 2/9, … ), as shown on the x axis. Blue (orange) shad-
ing shows the Realtime (HIRES) bootstrapped conditional event frequency distribution’s 95% confidence inter-
val surrounding the mean. The dashed diagonal line represents a perfectly reliable forecast, and the blue
(orange) vertical lines surrounding the diagonal show Realtime (HIRES) consistency bars computed using the
method of Bröcker and Smith (2007). The base rate (BR ∼0.2 for both Realtime and HIRES) is also plotted on
the x and y axes, and the rectangular region where x . BR and y . BR indicates a positive BSS (i.e., some
degree of forecast skill compared to event climatology). Blue (orange) lines in the inset figure plot the number of
probability swath objects as a function of ensemble probability threshold. (b) As in (a), but for forecasts with
valid times between 90 and 180 min (e.g., 90–120, 105–135, … , 150–180 min).
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averaged wMAX reaches a steady state intensity that is ∼30%
higher for HIRES objects compared to Realtime objects;
these differences are statistically significant at the 99% confi-
dence level via a Student’s t test. Bryan and Morrison (2012)
and Potvin and Flora (2015) similarly found, for squall lines
and supercells, respectively, an increase in simulated updraft
speed as Dx was reduced from 4 to 1 km, which these studies
attributed to a better model representation of nonhydrostatic
processes at smaller horizontal grid spacing. For example,
other factors being unchanged, coarser grid cells could resolve
anomalously wide updrafts with an anomalously strong buoy-
ancy perturbation pressure gradient force (PGFb) pointing
downward through their cores; once a hypothetical updraft
becomes sufficiently wide its PGFb approaches the hydrostatic
PGF (Markowski and Richardson 2010). The first 15 forecast
minutes also feature a sharp, statistically significant increase
in HIRES reflectivity object length (Fig. 11b) and eccentricity
(not shown) compared to those of Realtime reflectivity
objects, perhaps due to accelerated cell mergers in HIRES
forecasts.

Figure 12a shows histograms of composite reflectivity
spatially averaged over each reflectivity object for the 2
March Realtime and HIRES forecasts. The histogram left-tail
cutoffs are sensitive to the separate Realtime and HIRES cli-
matology-based reflectivity thresholds chosen for defining the

reflectivity object boundaries (Table 2). Mindful that these
histograms only include points from the most intense convec-
tive cells (but also those most likely to produce severe
weather), we find a ∼3-dBZ increase in median HIRES reflec-
tivity over median Realtime reflectivity. Comparison of
Realtime and HIRES 2 March histograms generated in the
same manner but for wMAX (Fig. 12c) reveals a ∼2 m s21

stronger median wMAX for the latter. Compared to those of
2 March, the 22 May Realtime and HIRES reflectivity
object REFLCOMP and wMAX histograms (Figs. 12b,d)
are shifted toward higher values, consistent with the higher
22 May environmental CAPE (Table 1). Bryan and Morri-
son (2012) showed how the relationship between precipita-
tion rate and CAM Dx can be complex and potentially
nonmonotonic, given the competing effects of enhanced
condensation and enhanced cloud evaporation as Dx
decreases. Here, we find that HIRES reflectivity objects
have higher median REFLCOMP compared to their Real-
time counterparts, both for the low-CAPE 2 March case
(Fig. 12a), the high-CAPE 22 May case (Fig. 12b), and the
others (not shown); this suggests that for the most intense
WoFS-forecast cells likely to produce severe weather, the
condensation effect may outweigh the evaporation effect
over the Dx 5 3–1.5-km range. It is possible, however, that
cloud evaporation could increase more strongly with

FIG. 12. (a) Histograms of composite reflectivity (dBZ) spatially averaged over each reflectivity object identified at all
3 Mar Realtime (blue) and HIRES (orange) 5-min model output times. For each histogram, bin frequencies are normal-
ized to keep the area under the probability distribution function traced by the histogram equal to 1. (b) As in (a), but for
22May forecasts. (c),(d) As in (a),(b), but for column-maximum w (m s21) averaged over each reflectivity object.
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reduced WoFS Dx for drier environments or when different
microphysics parameterizations are used.

Figures 13 and 14 compare Realtime and HIRES histo-
grams of variables associated with midlevel and low-level
rotation track objects, respectively. As for the reflectivity
objects, reducing Dx from 3 to 1.5 km results in stronger simu-
lated rotating storms on 2 March, as evidenced by the higher
median HIRES UH2–5 (Fig. 13a), wMAX (Fig. 13c), UH0–2

(Fig. 14a), and low-level z (Fig. 14c), as compared to Real-
time storms. The 22 May forecasts show similar results
(Figs. 13b,d, 14b,d), although like other high-CAPE cases
(e.g., 28 April and 4 May, not shown), their median
updraft intensities are less sensitive to Dx (cf. 13c,d).
Given the complex dependencies between supercell
updraft intensity, updraft width, CAPE, and environmen-
tal shear found in idealized simulations (Peters et al. 2019,
2020), it is not surprising to find variability in rotating
storm wMAX sensitivity to Dx among different 2020 case
days. Also notable is the broader distribution of HIRES
rotating storm wMAX (Figs. 13c,d) and low-level z (Figs.
14c,d) compared to the Realtime WoFS, which suggests
that the smaller Dx helps the model to resolve a greater
range of mesocyclone intensities.

Figure 15 compares Realtime and HIRES boxplots (Wilks
2011) showing distributions of local horizontal-maximum val-
ues of a few additional variables extracted from reflectivity

objects and their near-storm environments (NSEs), defined
here as 120 km3 120 km domains centered on the objects fol-
lowing Potvin et al. (2020). We find a notable 80 m AGL wind
speed4 distribution shift to higher values when Dx is reduced
to 1.5 km, with the median increasing from 20.4 to 23.8 m s21

(Fig. 15a). This result is encouraging, given the tendency for
the Realtime WoFS to underpredict near-surface wind gust
intensity (Flora et al. 2021); however, further work is neces-
sary to better understand the grid resolution dependence of
WoFS-forecast near-surface winds and validate these results
against observations. Reduced Dx also shifts the maximum
hail diameter, as predicted by the one-dimensional HAIL-
CAST model coupled to WRF (Adams-Selin and Ziegler
2016; Adams-Selin et al. 2019), toward higher values (Fig.
15b). This is not a surprising result given the tendency for
HIRES to generate stronger reflectivity object updrafts com-
pared to Realtime (Fig. 11a). Interestingly, median 0–3-km
storm-relative helicity (SRH0–3)—the vertically integrated
dot product of the horizontal relative vorticity vector compo-
nent with the storm-relative environmental wind vector

FIG. 13. As in Fig. 12, but for variables averaged spatially over the 5-min UH2–5 elements used in constructing mid-
level rotation track objects. Element-averaged UH2–5 (m2 s22) and column-maximum w (m s21) histograms are
shown in (a) and (b) and (c) and (d), respectively.

4 As mentioned in Flora et al. (2021), the WRF-output instanta-
neous 80 m AGL wind speed has traditionally been used as a
proxy for the maximum 10 m AGL wind gust recorded over the
time intervals between model output timestamps.
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(Markowski and Richardson 2010), increases from 567 to
725 m2 s22 when Dx is reduced to 1.5 km (Fig. 15c). This
implies that the smaller grid spacing may enhance low-level
storm-relative inflow and VWS in the NSE through storm-
environment interactions, a topic that invites further investi-
gation. Median reflectivity object NSE mixed-layer significant
tornado parameter (MLSTP; Thompson et al. 2003), a com-
posite index measuring an environment’s capability to support
significant (EF21) tornadoes that incorporates MLCAPE,
SRH, VWS, liquid condensation level height, and convective
inhibition, increases from 1.2 to 1.6 when Dx is reduced to 1.5
km (Fig. 15d).

Figures 16a and 16b compare Realtime and HIRES reflec-
tivity object NSE bivariate distributions of UH2–5 and
MLCAPE, shown as kernel density estimates (KDEs; Scott
1992). Unsurprisingly, MLCAPE shows little dependency on
Dx. These plots show how the tendency for UH2–5 to increase
with smaller grid spacing becomes most pronounced for
storms in high-CAPE environments, an intriguing result that
invites further investigation. KDEs comparing UH0–2 with
0–1-km storm relative helicity (SRH0–1; Figs. 16c,d) show an
increased correlation of NSE low-level VWS and/or storm-
relative inflow with storm UH0–2 in HIRES compared to
Realtime forecasts, providing further evidence that reduced
Dx may enhance storm-environment interactions favorable
for severe weather.

4. Summary and conclusions

This study addresses the question of whether reducing the
WoFS forecast horizontal grid spacing from Dx 5 3 km to
Dx 5 1.5 km sufficiently improves its deterministic and proba-
bilistic forecast skill to justify the increased computational
cost. It also seeks to better understand the sensitivity of
WoFS-forecast storm and NSE characteristics to the reduc-
tion in Dx. For 11 case days selected from the 2020 HWT
SFE, we have compared 9-member WoFS ensemble forecasts
run using the pseudo-operational Dx 5 3 km Realtime config-
uration against experimental HIRES ensemble forecasts that
use a Dx 5 1.5 km nest downscaled from the Realtime analyses
at the model initialization. We validated 3-h Realtime and
HIRES ensemble forecasts against observations using (i) sub-
jective SFE participant impressions; (ii) deterministic matching
of forecast reflectivity and rotation track objects to MRMS
observed objects; and (iii) matching mesocyclone probability
swath objects to observed rotation track objects to assess the
probabilistic forecast skill and reliability. Our major findings are
as follows:

• Compared to the Realtime WoFS, HIRES deterministic
forecasts of reflectivity object occurrence have similar skill,
as measured by CSIDET, for most forecast times. However,
although HIRES tends to over-forecast reflectivity objects
during the first 30 forecast minutes, the HIRES ensemble

FIG. 14. As in Fig. 12 but for 5-min UH0–2 elements used in building low-level rotation track objects. Element-aver-
aged UH0–2 (m

2 s22) and 0–2 kmAGL mean z (s21) histograms are shown in (a) and (b) and (c) and (d), respectively.
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mean BIASDET is ∼15% lower (improved) compared to
that of Realtime after t 5 60 min.

• HIRES deterministic forecasts of midlevel mesocyclone
occurrence are more skillful than those of the Realtime
WoFS, as evidenced by their statistically significant ∼0.05
higher ensemble mean CSIDET throughout the forecast
verification period, driven primarily by their higher
PODDET. However, the HIRES ensemble also has a sta-
tistically significant larger over-forecasting bias for mid-
level mesocylones.

• Differences between HIRES and Realtime low-level mesocy-
clone deterministic forecasts are qualitatively similar to those
for midlevel mesocyclones, but the improvement in HIRES
ensemble mean CSIDET is statistically significant only through
the first two hours of the forecast period.

• Reducing WoFS Dx improves midlevel mesocyclone proba-
bilistic forecast skill across most ensemble probability thresh-
olds, as measured by a statistically significant higher HIRES
NAUPDC and NCSI compared to Realtime. This improve-
ment is most notable prior to t 5 90 min.

FIG. 15. Boxplots of (a) maximum 80-m wind speed (m s21), (b) WRF-HAILCAST maximum hail diameter (in),
(c) 0–3-km storm-relative helicity (SRH0–3; m

2 s22), and (d) mixed-layer significant tornado parameter (MLSTP).
Each data point in the distribution represented by a boxplot is the maximum value taken from each WoFS-forecast
reflectivity object and its surrounding NSE at forecast times t5 60, 120, and 180 min. Labeled notches show the distri-
bution median values; shaded “box” bottoms and tops show the distribution 25th and 75th percentiles, respectively;
and the vertical “whisker” lines extend to the distribution minimum and maximum values. Realtime and HIRES data
distributions are constructed separately and shown in blue and orange colors, respectively.
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• Compared to the Realtime WoFS, HIRES low-level meso-
cyclone probabilistic forecast skill is degraded for the t 5
0–90-min period and improved for the t 5 90–180-min
period; differences are statistically significant.

• Compared to Realtime reflectivity objects, HIRES reflec-
tivity objects have a ∼30% stronger mean wMAX, 17%
stronger median 80-m wind gust intensity, 67% larger
median hail diameter, 28% higher median NSE SRH0–3,
and 33% higher median NSE MLSTP.

• Reducing Dx to 1.5 km results in a ∼30%–40% higher
median wMAX for midlevel rotation track objects and a
doubling in median z for low-level rotation track objects.

• SFE participants did not see large differences between
the 18-member Realtime and 9-member HIRES ensem-
bles at three different initialization times or added bene-
fit from the HIRES.

Our results show that while reducing the WoFS grid spacing
to 1.5 km generally improves deterministic skill (as measured
by CSIDET) in forecasting rotating storm occurrence, it has lit-
tle positive impact on CSIDET when considering a broader

sample of rotating and nonrotating storms identified by their
REFLCOMP exceeding the 99th climatological percentile
(Figs. 3–5). Given that rotation track objects tend to have
higher wMAX compared to reflectivity objects for both the
Realtime and HIRES WoFS (cf. 12, 13), our results are consis-
tent with L21, who found that reducing WoFS Dx to 1 km only
improved the detection of the most intense thunderstorms.
Also like L21, we find that reduced WoFS grid spacing
improves probabilistic mesocyclone forecasts, although L21
used an alternative probabilistic object verification metric
focused on removal of forecaster prior uncertainty. Our finding
a modest—but statistically significant—improvement in low-
level mesocyclone detection in the HIRES WoFS for some
forecast periods (Figs. 5c, 9b) also supports Potvin and Flora
(2015), who showed that reducing Dx from 3 to 1 km can
improve model representation of rapid low-level mesocyclone
strengthening and weakening in idealized supercell simulations.
Therefore, we find that reducing Dx to 1.5 km in downscaled
WoFS forecasts initialized from Dx 5 3 km analyses does, to
some degree, benefit the WoF mission by improving detection
of rotating storms at 0–3-h lead times.

FIG. 16. (a),(b) Kernel density estimates of midlevel updraft helicity (UH2–5) and mixed-layer CAPE, using maxi-
mum values computed from each reflectivity object and its surrounding NSE for (a) Realtime and (b) HIRES fore-
casts. (c),(d) As in (a) and (b), but for low-level updraft helicity (UH0–2) and 0–1-km storm-relative helicity
(SRH0–1). Slopes of the distribution best-fit lines are annotated in the panels’ upper-right-hand corners.
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The more challenging question to address going forward is
whether the increased computational cost associated with
halving the WoFS Dx could be more beneficial to the WoFS
mission if put toward other purposes, such as increasing the
ensemble size. The subjective evaluations comparing an 18-
member Realtime and 9-member HIRES ensemble showed
similar subjective ratings, and similar studies could be carried
out in the future between an 18-member Realtime ensemble
and a Realtime ensemble with larger membership to explore
whether more ensemble members would create a larger dif-
ference in subjective rating. A future study examining
WoFS Dx sensitivity in a larger number of cases to include
more “classic” Great Plains supercells would also be bene-
ficial. Our deterministic and probabilistic object-based
analysis methods could also be further improved by devel-
oping an automated method for distinguishing between
discrete mesocyclones and rotating storms embedded
within squall lines, as it might be reasonable to expect that
a smaller Dx could have a more beneficial impact on the
latter, given their tendency to be associated with nar-
rower, shallower, weaker, and more short-lived updrafts.
Finally, we should keep in mind that this study only inves-
tigated the impact of reduced Dx in downscaled WoFS
forecasts. It is possible that reducing Dx to 1.5 km within
the 15-min WoFS data assimilation cycling—thus giving
the background forecast fields a more finescale structure—
could provide more significant benefit, particularly for
later-cycle WoFS forecasts, although this would incur a sig-
nificant additional computational expense. Nevertheless,
we find that reducing WoFS free forecast Dx by a factor of
1=2 results in statistically significant improvement for most
short-range deterministic and probabilistic mesocyclone
forecast skill metrics evaluated; therefore, this WoFS con-
figuration change should be strongly considered for future
implementations.
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